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Fig. 2 Detection of LZD-resistant S. aureus by a simple PCR-restrict enzyme method!0

1. LIL LIV, V: 23S rRNAG) 1 E~5%.

2. a HIREBERENMATRET 35

3.

Note: 1) Primer Tm was set as 65C.
2)

I,
a.
b: HIFREERENET3 7C. 3 0 min WIBi&
e.

Gabriel EM et al, J Microbiol Methods. 2012 Aug;90(2):134-6
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Fig. 3 E-test of H503 and H503R strains on blood agar plate (48 h after inoculation)
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Abstract Limited use of linezolid for treating methicil-
lin-resistant Staphylococcus aureus (MRSA) infection was
approved in Japan in 2006. We report here the status of
linezolid-resistant MRSAs in Japan. Eleven linezolid-
resistant clinical isolates from 11 patients at six hospitals
were collected from 2006 through 2008. The minimal
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inhibitory concentration (MIC) of linezolid in these strains
varied from 8 to 64 pg/ml. All strains had at least one
G2576T mutation in the chromosomal gene(s) encoding
domain V of the 23S ribosomal RNA (rRNA). Chromo-
somal DNA encoding five copies of the domain V region
was analyzed by polymerase chain reaction (PCR). Strains
with the linezolid MICs of 64, 32, 16, and 8 pg/ml had the
G2576T mutation(s) in four, three (or four), two, and one
copy of the 23S rRNA genes, respectively. These results
suggest that the level of linezolid resistance seems to be
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roughly correlated with the number of mutations in the
genes encoding 23S rRNA. DNA samples from all 11
strains were subjected to pulsed-field gel electrophoresis
and were classified into seven independent clones having
>92% identity. Among the 11 patients, five had been
treated with linezolid and the remainder, in two hospitals,
had no history of prior linezolid use. The results suggested
possible nosocomial infections by linezolid-resistant
MRSA.

Keywords Linezolid - Resistance - rRNA gene -
MRSA - Nosocomial infection

Introduction

Infection by methicillin-resistant Staphylococcus aureus
(MRSA) in immunocompromised patients is a serious
problem in hospitals because the bacterium shows resis-
tance to a wide variety of antimicrobial agents. More
recently, MRSA infection of healthy individuals in the
community has become progressively problematic. To
combat MRSA infection, three types of powerful antimi-
crobial agent have been introduced: the glycopeptide
antibiotics such as vancomycin and teicoplanin, the oxa-
zolidinone derivative linezolid, and the aminoglycoside
arbekacin.

Linezolid is the first clinically used oxazolidinone
antimicrobial agent that is active against most gram-posi-
tive bacteria, including vancomycin-resistant S. aureus
and vancomycin-resistant Enterococcus. Most S. aureus,
including MRSA and the coagulase-negative Staphylo-
coccus, is found to be linezolid-susceptible at the break-
point of 4 pg/ml [1]. Linezolid shows antimicrobial
activity through inhibition of protein synthesis of suscep-
tible cells by binding to the domain V region(s) of the 23S
ribosomal RNA (rRNA) and thus inactivating the function
of the 50S ribosomal subunit [1, 2]. This powerful new
antibiotic was first approved for clinical use in 2000 in the
USA as well as European and other countries. Soon after
the introduction of linezolid to clinical use, in 2001, lin-
ezolid-resistant MRSA was reported in North America [3].
To the best of our knowledge, <20 linezolid-resistant iso-
lates from clinical specimens have been reported world-
wide up to 2008 [3-7]. The most common mechanism of
linezolid resistance involves a single nucleotide substitu-
tion in the chromosomal DNA encoding the domain V
regions of 23S rRNA. The most frequently found mutation
associated with linezolid resistance in the clinical strains
of S. aureus is a G2576T substitution (Escherichia coli
23S rRNA gene numbering) [3-5, 7]. Linezolid-resistant
strains generated in vitro by serial passage on a linezolid-
impregnated medium confirmed the presence of the
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G2576T mutation [5, 8]. It was also shown in vitro that the
frequency of linezolid resistance is very low, <107° [8].
Another mutation found in linezolid-resistant MRSA was a
T2500A substitution in the domain V region of the rRNA
genes [6]. The mutation was not only limited to a single
copy of the 23S rRNA gene but was found in multiple
copies of the 23S rRNA genes [9]. Besides the mutation in
the 23S rRNA gene(s), two additional mechanisms of
linezolid resistance have been reported. One is expression
of the chloramphenicol-florfenicol resistance (cfr) gene,
which encodes 23S rRNA methyltransferase [10], and the
other is a mutation in the gene(s) encoding the 50S ribo-
somal subunit proteins L3 and L4 designated as rp/C and
rplD, respectively [11, 12].

The S. aureus chromosome encodes rRNA at five to six
independent rRNA genes (rrn) or operons [13]. If the
G2576T mutation were to be accumulated in different
copies of 23S rRNA genes in the same cell, it is conceiv-
able that the level of resistance against linezolid would be
progressively high. In fact, an in vitro study revealed that
stepwise passages of linezolid-susceptible cells through
medium containing progressively higher concentrations of
linezolid yielded mutants with progressively high minimal
inhibitory concentrations (MICs) of linezolid [5]. Analysis
of such mutants showed that the cells accumulated the
G2576T mutation in multiple copies of the 23S rRNA
genes and the number of mutations was roughly correlated
with the level of resistance [14].

The use of linezolid in Japan for treating MRSA infec-
tion was approved in 2006, 6 years later than in the USA.
Emergence of linezolid-resistant MRSAs in Japan was
reported (in Abstracts in the Japanese language) from three
independent groups in 2008 and 2009. In addition, a case of
patient who had linezolid-resistant MRSA infection was
reported during the preparation of this manuscript [15].
However, a thorough analysis of linezolid-resistant strains
collected from hospitals in different regions of Japan has
not been reported. We report here seven independently
isolated linezolid-resistant MRSAs from 11 patients at six
hospitals in Japan. Nosocomial infection of the linezolid-
resistant MRSA manifested in two of these hospitals.

Materials and methods
Bacterial strains

Linezolid-resistant MRSAs were collected from six dif-
ferent hospitals in Japan from six different regions
(Table 1). Among 11 MRSA isolated, five were from
patients after linezolid treatment and six were from patients
who had no record of linezolid treatment. A clonal rela-
tionship of the MRSA strains was determined by pulsed-field
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Table 1 Linezolid-resistant methicillin-resistant Staphylococcus aureus (MRSA)

Hospital Patients Strains® Linezolid treatment Specimen Mutation Number of mutation
(days)® in the rRNA gene®
KY A KY5 29 Blood G2576T 4
KT B KTI 47 Stool, blood G2576T 2
C KT6 0 Sputum, stool G2576T At least 1
KS1 D KS510 90 Blood G2576T 4
KS2 E KS227 25 Blood G2576T 3
TH F THI1 0 Sputum G2576T At least 1
G TH2 0 Catheter G2576T At least 1
H TH3 0 Wound pus G2576T At least 1
I TH4 0 Wound pus G2576T 1
J THS 0 Pus G2576T 1
TK K TK471 15 Blood G2576T At least 1

Hospital locations: KY (Kyushu), KT (Kanto), KS/ (Kansai 1), KS2 (Kansai 2), TH (Tohoku), 7K (Tokai)

* A multiple strain isolated from the same patient having an identical DNA type was excluded

A given number means a total number of days the patient was treated with linezolid either consecutively or intermittently

¢ All strains had five copies of the rRNA gene

gel electrophoresis (PFGE) of Sma-I-treated genomic
DNA. Substrains repeatedly isolated from the same patient
with an identical DNA type were excluded from the list.

Antibiotic susceptibility test

The MIC of the antimicrobial agent was determined by the
agar dilution method according to the protocols of the
Clinical and Laboratory Standards Institute (CLSI) [16].

Population study

Bacteria were grown in Mueller—Hinton broth overnight,
and the cell density was adjusted to As;s = 0.3. The sus-
pension was serially diluted tenfold, and 100-pl aliquots
were streaked on linezolid-impregnated brain—heart infu-
sion agar. Number of colonies was counted after 48 h of
incubation at 35°C.

Extraction of DNA

A single colony was isolated from the overnight culture on
Mueller-Hinton agar, suspended in phosphate buffer sal-
ine, and treated with 20 mg/ml of lysozyme (Sigma-
Aldrich Corp., St. Louis, MO, USA) and 1 mg/ml of
lysostaphin (Wako Pure Chemicals, Osaka, Japan) for
30 min at 37°C according to the manufacturer’s instruc-
tions. Then the genomic DNA was extracted by the
QIAGEN DNeasy Blood & Tissue kits (Qiagen GmbH,
Hilden, Germany). The DNA was subjected to polymerase
chain reaction (PCR) amplification.

10

PCR amplification of the chromosomal gene
encoding the 23S rRNA

Chromosomal genes encoding the 23S rRNA of five
independent operons were amplified using the primers
reported earlier [9]. Sizes of the PCR product using the
primers rrnl through rrnS were expected to be in the range
of 5.6-6.5 kbp. Given these large sizes, Phusion High
Fidelity DNA polymerase (Finzymes, Espoo, Finland) and
GC-enriched PCR buffer were used. A thermal cycler was
set as follows: 94°C for 30 s for the initial denaturation and
then followed by 30 cycles of denaturation, annealing, and
extension at 94°C for 20 s, 55°C for 20 s, and 72°C for
3.5 min, respectively. The PCR products were subjected to
agarose-gel (1%) electrophoresis, extracted, and purified
using a QIAGEN Gel extraction kit (Qiagen). PCR
amplification of the domain V region of the 23S rRNA
genes and DNA sequencing chromosomal DNA encoding
the domain V region of the 23S rRNA spanning from the
2,280th through 2,699th bp (E. coli numbering) was
amplified. The primers used were 5-GCGGTCGCCTC
CTAAAAG-3' (upper primer, corresponding to the 2,280th
through 2,297th bp of the S. aureus 23S rRNA gene) and
5'-ATCCCGGTCCTCTCGTACTA-3' (lower primer, cor-
responding to the 2,680th through 2,699th bp). DNA was
amplified using Phusion High Fidelity DNA Polymerase
(Finzymes). PCR was carried out as follows: 98°C for 30 s,
and then 35 cycles of denaturation, annealing, and exten-
sion at 98°C for 10 s, 58°C for 10 s, and 72°C for 5 s,
respectively. The products were subjected to agarose-gel
electrophoresis (AGE) (2%), and the gel was stained with
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GelRed (Biotium, Hayward, CA, USA). The isolated DNA
was sequenced (Takara Bio, Mie, Japan or Nihon Gene
Research Laboratories, Miyagi, Japan) and aligned with the
corresponding nucleotide sequences obtained from linezo-
lid-susceptible S. aureus (GenBank accession no. X68425).

Pulsed-field gel electrophoresis

Chromosomal DNA was extracted from the MRSA cells and
then digested with Sma-I according to the method described
by Bannerman et al. [17, 18]. The DNA plugs sliced at a
thickness of 1-4 mm were placed in 170 pl of a solution
containing 10 U of Sma-1and 20 pl of T buffer [0.1 M Tris—
hydrochloric acid (HCI), pH 8.0, 700 mM magnesium
chloride (MgCl,), 0.2 M potassium chloride (KCl), 700 mM
2-mercaptoethanol], and 20 pl of 0.1% bovine serum albu-
min (BSA). The mixture was incubated at 25°C for 4 h.
Samples were loaded on 1% agarose gel prepared in 0.5x
Tris-borate + ethylenediaminetetraacetate (EDTA) (TBE)
buffer containing 44.5 mM Tris, 44.5 mM boric acid, and
1 mM EDTA pH 8.0. The wells were sealed with 1% aga-
rose in the same buffer. PFGE was carried out with a CHER-
DRIII electrophoresis cell (Bio-Rad) at 6 V/cm for 20 h at
14°C, with initial and final pulses conducted for 5.3 and
34.9 s, respectively. The gel was stained with GelRed
(Biotim) according to the manufacturer’s manual and visu-
alized under a 254-nm ultraviolet light.

Results and discussion

Source of linezolid-resistant MRSA and the patient’s
background

We collected 11 linezolid-resistant clinical isolates from 11
patients at six hospitals through members of the MRSA
Forum of Japan (Table 1). Hospitals from which the strains
were collected were scattered throughout Japan: Kyushu
(KY), Kansai 1 (KS1), Kansai 2 (KS2), Tokai (TK), Kanto
(KT), and Tohoku (TH) hospitals. Therefore, it is unlikely
that the same strain was transmitted from one hospital to
another. In the KT hospital, three and two strains were
isolated from patients B and C, respectively, and these are
reported here as KT1 and KT6, respectively. In the KS2
hospital, two strains with slightly different properties were
isolated and are reported here as KS227 due to perfect
matching of the DNA type. Among the 11 patients, five had
a history of linezolid treatment, with individual total
treatment times of 90, 47, 29, 25, and 15 days consecu-
tively or intermittently. Obviously, prolonged linezolid
administration caused the emergence of the resistant strain
in most cases. On the other hand, six strains were isolated
in two hospitals from six patients who had no history of
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linezolid treatment, suggesting the possibility of nosoco-
mial infections. It is of interest to note that five strains were
isolated in the TH hospital from five patients who had no
history of linezolid treatment, suggesting dissemination of
the resistant strain in the hospital from the patient(s)
transferred from other hospitals. In the KT hospital, one
patient had linezolid treatment, and the identical DNA type
strain was isolated from another patient who did not have
linezolid treatment.

Antimicrobial susceptibility of the isolates

The MICs of linezolid varied from 8 to 64 pg/ml in these
MRSA strains (Table 2). MIC values were not necessarily
correlated with the duration of linezolid treatment
throughout. The linezolid MIC in the strains isolated from
patients who were not treated with linezolid may be
unpredictable because these strains must have been trans-
mitted from other patient(s). In fact, the linezolid MIC in
six of these strains appeared to be high, at 32, 32, 16, 8, and
8 ng/ml. The strain isolated from patient C, who had no
record of linezolid treatment, showed the linezolid MIC of
32 pg/ml. In the TH hospital, five strains were isolated
from five patients with no history of linezolid treatment,
and the linezolid MICs in these strains were 8-32 pg/ml.
These results strongly indicate that the resistant MRSAs
were transmitted in the same hospital or nosocomially. A
substrain of KS227 isolated from patient E, who had a
history of linezolid administration and subsequently van-
comycin treatment, showed resistance to both linezolid and
vancomycin, with MIC values of 16 and 4, respectively
(data not shown). This strain may be classified as a lin-
ezolid-resistant vancomycin-intermediate-resistant MRSA.

All these strains were resistant to oxacillin, imipenem,
pazufloxacin, minocycline, and chloramphenicol but were
susceptible to vancomycin, teicoplanin, and arbekacin. All
strains showed very high MIC values of chloramphenicol.
It was reported that linezolid resistance could be conferred
via chloramphenicol florfenicol methyltransferase [19, 20].
Thus, it is possible that some of these strains acquired the
¢fr gene encoding chloramphenicol-florfenicol methyl-
transferase. We have not investigated this possibility any
further.

Classification of the linezolid-resistant MRSA strains

In order to investigate whether these linezolid-resistant
MRSAs isolated in Japan were derived from different or
similar clones, we analyzed the DNA type of these strains
by PFGE of Sma-I-restricted DNA (Fig. 1). Overall relat-
edness of the strains isolated from different hospitals
appeared to be 72%, which indicates considerable distance,
suggesting that the strains isolated from different hospitals
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Table 2 Minimal inhibitory concentrations (MICs) of selected antimicrobial agents commonly used for treating methicillin-resistant Staphy-

lococcus aureus (MRSA) infection

Strains LZD CHL VAN TEC ABK SXT RIF MIN PZFX IPM OXA
KY5 32 64 1 0.5 2 2 =0.25 16 >128 128 >64
KT1 16 32 1 1 0.5 1 =0.25 16 >128 32 >128
KT6 32 64 1 1 0.5 1 <0.25 16 >128 8 128
KS510 64 64 1 1 4 2 <0.25 16 >128 64 >128
KS227 32 32 2 2 4 2 <0.25 16 >128 128 >128
TH1 32 64 2 4 0.5 2 <0.25 16 16 >128 >128
TH2 16 64 1 4 1 2 =0.25 16 16 >128 >128
TH3 32 1 4 0.5 2 <0.25 16 16 >128 >128
TH4 32 1 4 0.5 2 <0.25 16 16 >128 >128
TH5 32 1 4 0.5 2 <0.25 16 16 >128 >128
TK471 16 64 2 2 1 2 <0.25 8 >128 >128 >128

LZD linezolid, CHL chloramphenicol, VAN vancomycin, TEC teicoplanin, ABK arbekacin, SXT sulfonamide-trimethoprim, RI/F rifampin,

MIN minocycline, /PM imipenem, OXA oxacillin

lambda ladder

Fig. 1 Pulsed-field gel electrophoretic profiles of Sma-I-digested
genomic DNA of the linezolid-resistant methicillin-resistant Staph-
ylococcus aureus (MRSA) and its subsequent cluster analysis

were from independent clones. Strains isolated in the KS1,
KT, or KS2 hospital showed about 92% identity, suggest-
ing close relatedness. However, it is less likely that they
were derived from the same clone because of the distant
localities of these hospitals—at Hyogo, Tokyo, and Osaka.
The strains isolated in the TH hospital showed 83% iden-
tity; however, close examination revealed that the strains
could be divided into two groups: TH1-3 and TH4-5,
suggesting the presence of two independent resistant clones
in this hospital. Two strains from the KT hospital showed
100% identity, indicating the dissemination of a single
clone of the resistant strain within the hospital. These
findings suggest the presence of nosocomial infection of
the linezolid resistant strains in two hospitals. To the best
of our knowledge, these were the first cases of nosocomial
dissemination of linezolid-resistant MRSAs. Population
analysis of linezolid MICs was carried out for all strains.
The results showed that all strains tested were reasonably
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homogeneous, with two- to fourfold differences among the
MICs (data not shown).

Mechanism(s) of linezolid resistance in the present
isolates

As mentioned above, the linezolid-resistant strains used in
this study were isolated from several hospitals in distant
regions of Japan. Among these, more than two strains were
isolated in three hospitals either from the same or different
patients. Therefore, it is important to investigate the iden-
tity of the clone(s). Clonal analysis of the isolates and
identification of the mutation(s) may provide important
information in understanding whether the resistant strains
were transmitted between hospitals or, more importantly,
whether there was an occurrence of nosocomial infection.
To date, the cause of linezolid resistance in S. aureus has
been reported to be mainly a nucleotide substitution at
G2576T in domain V of the rRNA genes. In addition, it is
possible that the resistant strains had mutations in more
than one copy of the rRNA genes. Therefore, we analyzed
the chromosomal DNA encoding the rRNA of the iso-
lates by PCR amplification and subsequent nucleotide
sequencing.

It is well recognized that S. aureus has five or six copies
of rRNA operons [9, 13]. To ascertain this, we first ana-
lyzed the chromosomal DNA encoding the rRNA gene by
long-range PCR and found that all the strains had five
copies of the rRNA gene. Amplification of the 23S rRNA
genes of five different operons was carried out by a pre-
viously described method [9]. Needless to say, the lin-
ezolid-susceptible strain showed no sign of mutation in
domain V of any 23S rRNA operons. All the linezolid-
resistant isolates investigated here were subjected to anal-
ysis of domain V of the rRNA genes. The results revealed
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that all isolates had at least one G2576T mutation that may
have been the cause of the linezolid resistance (Table 1).
To understand whether the mutation(s) in multiple copies
of the rRNA gene was related to the level of resistance, we
analyzed the rRNA genes of all five copies of the selected
strains. The strains selected were TH4, THS, KT1, KS227,
KYS5, and KS510 having the linezolid MICs of 8, 8, 16, 32,
32, and 64 pg/ml, respectively (Table 2). Result revealed
that the strains with the linezolid MICs of 8, 16, 32, and
64 pg/ml had the G2576T substitution in one, two, three
(or four), and four copies, respectively, of the rRNA genes.
No strain having the mutation in all five operons was
found, probably because such a cell may be lethal. Thus, it
became evident that the accumulation of a single point
mutation in different copies of rRNA genes is correlated
with the level of linezolid resistance in clinically isolated
MRSA.

Previous in vitro study revealed that the accumulation
of a single point mutation, G2576T, in the 23S rRNA
genes of different operons might be associated with a
stepwise increase in the level of linezolid resistance [14].
The results of this study using clinically isolated strains
were consistent with that of in vitro studies. Stability of
the G2576T mutation was studied by several groups of
investigators, and two contrasting results were reported.
One group of investigators reported that the resistant
phenotype of clinical isolates was stable even if the
resistant strains were subjected to serial subculture in a
linezolid-free medium [21]. Another group reported that
the resistant cells subcultured for 60 cycles in a drug-free
medium caused loss of mutations of the 23S rRNA gene
[14, 22].

Overall, it is clear that the number of mutations in
multiple copies of the 23S rRNA gene is most likely
associated with the levels of linezolid resistance in the cells
isolated from clinical materials, and this finding might be
consistent with the result obtained from the resistant cells
selected in vitro. Two groups of investigators suggested
that the G2576T mutation in the ribosomal gene acts as
negative selective pressure in cell growth in a linezolid-free
environment because the growth rate of the mutant may be
slower than that of the wild-type cells due to the low rate of
protein synthesis [9, 14]. Other investigators reported that
the mutation rate in the emergence of the linezolid-resistant
mutant is primarily very low, but once the mutation has
occurred, the rate becomes ~ 1,000-fold higher for
unknown reasons [9]. It was also reported that some strains
having the linezolid MIC of 4 pg/ml, the breakpoint, have
a mutation in the 23S rRNA gene as selected in the lin-
ezolid-containing medium [14]. Surveillance studies have
indicated that linezolid-resistant MRSA is still rare.
However, long-term use of linezolid for MRSA infection
may cause the emergence and dissemination of resistant
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cells. This study in fact demonstrates the nosocomial
transmission of linezolid-resistant MRSA to patients who
had no history of linezolid treatment.

In summary, we described the microbiological charac-
terization of 11 clinical isolates of linezolid-resistant
MRSAs in Japan. It was reported that appearance of
spontaneous oxazolidinone-resistant cells is very low,
>10"% in S. aureus [8], which is consistent with the fact
that the frequency of linezolid-resistant clinical isolates of
S. aureus is still low [23, 24]. However, during a short
period of clinical use of linezolid in Japan for treating
MRSA infection, we experienced the emergence of at least
11 (this report) plus two (meeting reports) linezolid-resis-
tant MRSA strains.
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Abstract Community-acquired methicillin-resistant Sta-
phylococcus aureus (CA-MRSA) has become a major
concern worldwide. In the United States, ST8 CA-MRSA
with SCCmecIVa (USA300) has been predominant, affect-
ing the entire United States. In this study, we investigated
Japanese ST8 CA-MRSA with new SCCmeclIV1 (designated
ST8 CA-MRSA/J), which has emerged in Japan since 2003.
Regarding community spread and infections, ST8 CA-
MRSA/J spread in 16.2-34.4% as a major genotype in the
community in Japan, and was associated with skin and soft
tissue infections (SSTIs), colitis, and invasive infections
(sepsis, epidural abscesses, and necrotizing pneumonia),
including influenza prodrome cases and athlete infections,
similar to USA300. It spread to even public transport and
Hong Kong through a Japanese family. Regarding genetic
diversity, ST8 CA-MRSA/J included ST and spa variants
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and was classified into at least three pulsed-field gel elec-
trophoresis types, ST8 Ju to y. Of those, ST8 Jf was asso-
ciated with severe invasive infections. As for genomics, ST8
CA-MRSA/J showed high similarities to USA300, but with
marked diversity in accessory genes; e.g., ST8 CA-MRSA/J
possessed enhanced cytolytic peptide genes of CA-MRSA,
but lacked the Panton—Valentine leukocidin phage and
arginine catabolic mobile element, unlike USA300. The
unique features of ST8§ CA-MRSA/J included a novel mosaic
SaPI (designated SaPIj50) carrying the toxic shock syn-
drome toxin-1 gene with high expression; the evolution
included salvage (through recombination) of hospital-
acquired MRSA virulence. The data suggest that ST8 CA-
MRSA/J has become a successful native clone in Japan, in
association with not only SSTIs but also severe invasive
infections (posing a threat), requiring attention.
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Introduction

Methicillin-resistant ~ Staphylococcus —aureus (MRSA),
which possesses staphylococcal cassette chromosome mec
(SCCmec), has been a common nosocomial pathogen since
1961 [1-4]. Another class of MRSA, designated commu-
nity-acquired MRSA (CA-MRSA), emerged in the com-
munity from 1997 to 1999 and has become a major concern
worldwide [1, 2, 4, 5]. CA-MRSA generally possesses
SCCmec type IV (or V), which is suitable for community
spread [5, 6], and often produces Panton—Valentine leu-
kocidin (PVL), a toxin acting against polymorphonuclear
neutrophils (PMNs), monocytes, and lung tissues [5, 7-9].
CA-MRSA is genetically heterogeneous, with multilocus
sequence types (STs) such as ST8, ST30, ST59, and ST80
[5, 7]. CA-MRSA spreads among otherwise healthy chil-
dren or adolescents, such as athletes, and is primarily
associated with skin and soft tissue infections (SSTIs),
including pyogenic skin infection, and also with severe
systemic infections, such as sepsis, necrotizing pneumonia,
necrotizing fasciitis, and osteomyelitis [1, 2, 4].

In the United States, CA-MRSA USA300, with the
genotype ST8/spal(t008)/agr1/SCCmeclVa, is currently
the most prominent clone, affecting the entire United States
[5]. USA300 is PVL positive and possesses the unique
linkage of SCCmeclIVa and arginine catabolic mobile ele-
ment (ACME), which confers on its host not only drug
resistance but also high virulence/colonization abilities [5,
6, 10]. Peptide cytolysins (such as phenol-soluble modu-
lins, PSMs) have increasingly been noted as virulence
factors of CA-MRSA (USA300) [5].

In this study, we investigated the successful Japanese
ST8 CA-MRSA clone (ST8 CA-MRSA/J) in terms of
community spread and infections, genetic diversity, and
comparative genomics (ST8 CA-MRSA/J vs. USA300),
aiming at the search for the key factors contributing to ST8
CA-MRSA/J spread and infections.

Cases, materials, and methods

Cases

Infections and colonization by ST8 CA-MRSA/J (including
variants) are summarized in Table 1. CA-MRSA and hos-

pital-acquired MRSA (HA-MRSA) were classified accord-
ing to a previous definition [14]. Severe invasive infections
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are as follows. In one case (case 1), an 11-year-old boy
contracted influenza A on February 1, 2008, and had fever
and back pain from February 8. He was hospitalized on
February 15 because of fever (39.2°C) and severe back pain
extending from the thoracic vertebrae to the lumbar verte-
brae. White blood cell (WBC) count and C-reactive protein
(CRP) were 20,100/pl and 17.5 mg/dl, respectively. Multi-
ple abscesses at the erector spinea muscles and the epidural
region of the spine extending from T8 to L4 were observed.
MRSA was detected upon blood culture, biopsy specimen of
the lesion, and abscesses; his CA-MRSA was termed NN50.
He underwent drainage, and vancomycin (2 g a day) was
administered.

In the other case (case 2), a 15-year-old boy (soccer
player) became ill with influenza B on March 14, 2007. A
feeling of general malaise continued, and he started expe-
riencing right chest pain from the beginning of April. He
had fever (38°C), bloody sputum, and progressive dyspnea
on April 18, and was admitted to a hospital on April 19.
Chest radiography revealed permeation shadows with
multiple cavities in the right middle lung. WBC count and
CRP were 15,000/pl and 5.8 mg/dl, respectively. MRSA
was detected upon culture of bloody sputum; his CA-
MRSA was termed 3457. His necrotizing pneumonia was
treated with teicoplanin (800 or 400 mg/day), clindamycin
(1.8 g/day), and panipenem (1.5 or 1.0 g/day).

Bacterial strains

Table 1 lists 25 strains of ST8 CA-MRSA/J (including
variants). Study A includes epidemiologically defined
community infections (n = 13). Study B1 includes a nos-
ocomial infection, and study B2 includes non-multidrug-
resistant ST8 (or single locus variant) MRSA strains
(n = 11) from hospitals; ST8 (or variant) accounted for
34.4% (11/32) of non-multidrug-resistant strains (n = 32)
isolated in hospitals [most HA-MRSA strains (>90%) were
multidrug resistant]. CA-MRSA strains from a Japanese
family in Hong Kong were provided by Pak-Leung Ho
[13]. Environmental ST8 MRSA strains (n = 3) were
isolated from the straps and handrails of trains from 2008
to 2011 in Tokyo and Niigata. ST8 MRSA accounted for
33.3% (5/15) of MRSA train isolates (n = 15), which
included strains described previously [15]. USA300
included type strain (USA300-0114; this strain was kindly
provided by L.K. McDougal and L.L. McDonald) and three
Japanese isolates: NN36 from a 3-month-old Indian girl
with abscesses [16]; NN47 from an 11-month-old Japanese
girl with cellulitis and sepsis followed by osteomyelitis
[17]; and 549 from an inpatient and medical staff with
abscesses and cellulitis [18]. PVL-positive CA-MRSA
included ST22 strain NN48 from familial infection cases
[19], ST30 strains NN1 and NN12 from bullous impetigo
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and bloodstream infection [11], ST59 strains PM1 (from
Taiwan [20]) and OS7 from cellulitis [21], and ST80
strains HT20030345 (from the Netherlands) and HT200
30442 (France) [22]; strains HT20030345 and HT200
30442 were kindly provided by Jerome Etienne. PVL-
negative CA-MRSA included ST88 strain NN51 [19],
ST89 strain NN7 [11], and ST91 strain NN15 [11]; STSS,
ST89, and STI1 strains were from bullous impetigo and
were exfoliative toxin (ET) positive. The New York/Japan
clone [major HA-MRSA in Japan, which carried SaPIm1/
nl with the tst gene (encoding toxic shock syndrome toxin-
1, TSST-1)] included reference strains Mu50 and N315
(which were kindly provided by Keiichi Hiramatsu), and
strains 16 and I8 from 56- and 59-year-old patients who
developed toxic shock syndrome (TSS) in the postoperative
period of gastric cancer [11].

Molecular characterization of MRSA

Molecular typing of MRSA was performed as described
previously [20]. It included ST typing, clonal complex
(CC) typing, spa (protein A gene) typing [using public spa
type databases, eGenomics (http://tools.egenomics.com/)
or Ridom SpaServer (http://spaserver.ridom.de/)], acces-
sory gene regulator (agr) typing, SCCmec typing [accord-
ing to the guidelines by the International Working Group
on the Classification of Staphylococcal Cassette Chromo-
some Elements [23] and Web page (http://www.staphy
lococcus.net/)], and coagulase (Coa) typing (using a
staphylococcal coagulase antiserum kit; Denka Seiken,
Tokyo, Japan). The 44 virulence genes were analyzed by
polymerase chain reaction (PCR); they included 3 leuko-
cidin genes (including PVL gene), 5 hemolysin genes, 17
staphylococcal enterotoxin (SE) genes (including zs7), 1
putative SE gene, 3 exfoliative toxin (ET) genes, 14
adhesin genes, and ACME-arcA gene [6].

The novel SCCmecIVnew.1.1.1 (SCCmeclIV1) of ST8
CA-MRSA/J [24] was detected by PCR using two primer
sets: Fw (5'-TGACCTCCAAGTAACAAAAG) and Rv (5'-
TCATCGTTACGTTACTTGGT), generating a 485-bp
PCR product [24]; and 25F (5-AGCCCTTCAACTGTA
ACCT) and 16R (5-GTAGTTGCACCAATCGTAGA),
generating a 650-bp PCR product. TSST-1 production
levels (the amount of TSST-1 in the supernatant of bacte-
rial cultures at 2.0 x 10° cfu/ml) were examined using a
TST-RPLA kit (Denka Seiken). Pulsed-field gel electro-
phoresis (PFGE) analysis was performed with Smal
digestion, as described previously [11].

Assay of the expression levels of virulence genes

The mRNA expression levels of nine virulence genes
(including the psmao gene) were examined, compared with
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USA300, as described previously [19]. Primers used were
those described previously [20, 25].

Susceptibility testing

Susceptibility testing of bacterial strains was carried out
using the agar dilution method with Mueller-Hinton agar
according to previous procedures by the Clinical and
Laboratory Standards Institute [26].

Pyrosequencing of the MRSA genome and homology
analysis

The MRSA NN50 genome was analyzed by pyrosequencing
using a genome sequencer FLX system (Roche Diagnostics,
Branford, CT, USA). In this study, 190,063 reads yielded
74-Mb raw sequences (~ 26 fold of the genome); GenBank
accession number for the NN50 genome is BAEA01000000.
The mapping of contigs on the 2,822,306-bp USA300
(FPR3757) genome (GenBank accession number NC_00
7793) and the search for genes or open reading frames (oryf)
were performed using the software in silico MolecularCl-
oning (version 4.2) (In Silico Biology, Yokohama, Japan).
GenBank accession numbers for the DNA sequences carry-
ing new SaPI with the sz, sec, and sel genes and gentamicin
resistance transposon Tn4001, determined in this study, are
AB679717 and AB682805, respectively; that for SCCme-
cIVlis AB678405.

Statistical analysis

Data for mRNA expression assay were evaluated by
analysis of variance with repeated measurement. The level
of significance was defined as a P value <0.05.

Results
Community spread and infections in ST8§ CA-MRSA/J

ST8 MRSA clinical strains (n = 25) were collected during
2003 and 2010 in Japan and Hong Kong (Table 1). In
Japan (n = 21), isolates from SSTIs (bullous impetigo,
abscesses, cellulitis, atopic dermatitis, and eczema)
accounted for 33.3% (7/21); pneumonia for 9.5% (2/21);
colitis for 9.5% (2/21); paravertebral muscle/epidural
abscesses with sepsis for 4.8% (1/21), postsurgical (wound)
infection (4.8%, 1/21); and colonization for 38.1% (8/21).
Geographic location covered five prefectures.

Definite ST8 CA-MRSA infections (study A, n = 13)
included seven SSTI cases, two colitis cases, and two
serious invasive cases (necrotizing pneumonia and sepsis/
epidural abscesses).
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ST8 MRSA was also isolated in hospitals, including
postsurgical infection (study B1). It accounted for 34.4%
(11/32) in a non-multidrug-resistant MRSA pool (likely
CA-MRSA) in hospitals (study B2); the cases were largely
colonization (n = 8), but included pneumonia (n = 1) and
cellulitis (n = 2).

Moreover, ST8 MRSA spread even to surfaces and
subway trains, and was transferred to Hong Kong through a
Japanese family (whose members were all colonized or
infected) (study A).

Genotypes and diversity in ST8 CA-MRSA/J

For 21 clinical strains in Japan, a major genotype was ST8/
spa606(t1767)/agr1/SCCmecIV1/Coalll, with divergence
in ST type, spa type (Table 2). All the strains were nega-
tive for PVL and ACME and positive for superantigenic
toxin-encoding S. aureus pathogenicity island SaPI (car-
rying the tst, sec, and sel genes). TSST-1 production levels
of ST8 CA-MRSA/J (strain NN50) were higher than the
New York/Japan clone carrying SaPIml/nl (even more
than strains from TSS patients) (Fig. 1). Most strains were
resistant to gentamicin, because of aacA-aphD (95.2%,
20/21), and many strains were positive for sep (66.7%,
14/21) (Table 2).

The environmental strains (from trains) and Hong Kong
strains also showed very similar characteristics to the
clinical strains (Table 2).

The above ST8 CA-MRSA/J (and its variants) differed
from USA300 in terms of spa type, SCCmec type, PVL,
ACME, SaPI carrying fst, sec, and sel, SaPI carrying sek
and seq, phage carrying sep, and gentamicin resistance, as
shown in Table 2.

Next, PFGE patterns of ST8 CA-MRSA/J strains were
analyzed (Fig. 2). A major PFGE pattern (named ST8J«)
consisted of 11 strains (from SSTIs, colitis, and environ-
ments in Tokyo, Niigata, and Oita) and may include an
additional 2 strains (from a hospital MRSA pool in Tokyo).
PFGE-type ST8Jf included 2 strains (NN50 and 3457)
from severe invasive infections, representing a severe type.

Two strains (2F4 and 2F5) from Hong Kong shared the
same PFGE pattern (ST8Jy) as strains NN3 and S2 in
Japan, indicating transmission from Japan to Hong Kong;
two additional strains (2I5 and 2A3) from Hong Kong also
resembled ST8Jy. All ST8 CA-MRSA/J strains were
divergent from USA300; four USA300 strains slightly
diverged from each other by one or two bands (Fig. 2).

Comparative genomics of ST-8 CA-MRSA/J (strain
NN50)

The NN50 genome was 97.4% homologous to the USA300
(strain FPR3757) genome, albeit with marked divergence
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in movable genetic structures (Fig. 3). NN50 lacked the
ACME region, SaPI5 (carrying sek and seq), and phage
@SA2usa (carrying the PVL gene) of USA300. Instead,
NNS50 possessed a novel SaPI carrying zst, sec, sel, and bla
(named SaPIj50), which was a mosaic structure composed
of SaPIm4, PI TO131, and SaPIm1/n1 (Fig. 4). NN50 also
carried gentamicin resistance transposon Tn400I, and
ampicillin resistance transposon Tn552. A phage ¢@Salj
was also inserted; ¢Salj showed approximately 80%
homology to corresponding phages ¢Sal (such as pNM1
and @11). ¢Sa3 in NN50 (named ¢Sa3j) acquired sep, but
lacked chp (encoding chemotaxis inhibitory protein), as
shown in Fig. 5a. NN50 had no plasmids.

NN50 possessed SCCmeclV with a novel subtype
(SCCmeclV]) (Fig. 3). The size of SCCmecIV] was
25,555 bp, and the 8,193-bp J1 joining region contained a
4.8-kb orf, encoding a novel 1,604-amino-acid cell wall-
anchored surface protein with the LPXTG motif (named
CWASP/J). The CWASP/J gene (spj) showed no homology
to previous sequences. PCR assay with primer sets (Fw and
Rv) and (25F and 16R) (Fig. 3) revealed that all ST8 CA-
MRSA/J strains (including variants) in Table 2 carried the
spj gene (SCCmeclV1).

Similarly to USA300, NN50 possessed additional viru-
lence genes and regions such as genomic islands (vSacx to
y) and a series of immuno evasion-related genes, such as
major histocompatibility complex class I analog gene
(map), albeit with divergence (Figs. 3 and 5b).

The mRNA expression levels of the toxin and adhesin
genes

The mRNA expression levels of ST8 CA-MRSA/J (strains
NNS50 and 3457) were examined, and compared with CA-
MRSA with other ST types or HA-MRSA (the New York/
Japan clone) (Fig. 6). For cytolysin genes (psma, hld, and
lukED), CA-MRSA (including ST8 CA-MRSA/] and
USA300) shared very similar expression levels, irrespec-
tive of ST types, but their expression levels (especially
those for lukED) were significantly higher than HA-MRSA.
The hla and hlg expression levels of CA-MRSA tended to
be higher than HA-MRSA, but the data were not signifi-
cantly different (data not shown).

For adhesin genes, fnb and clf expression levels were
similar among CA-MRSA clones but significantly higher
than HA-MRSA (Fig. 6).

Discussion
MRSA is a powerful pathogen, which can acquire or

exchange virulence and drug resistance genes through
horizontal gene transfer or recombination to adapt to
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Table 2 continued
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Japanb (n=23)

-FPR3757

-0114

35 kb (1/3), 32 kb (1/3),

37 kb, 4.4 kb, 3.1 kb

ND# 32 kb, 3.0 kb

55 kb (2/2)

55 kb (2/5), 50 kb (1/5)—(2/5)

Plasmid

3.0 kb (1/3), 1.4 kb (1/3)

CA-MRSA community-acquired methicillin-resistant Staphylococcus aureus, G gentamicin, K kanamycin, T tetracycline, E erythromycin, N norfloxacin, M mupirocin

* Including strain NN50, which exhibited ST8 and spa606 (t1767); was positive for lukE-lukD, sep, and edin; was resistant to gentamicin; and lacked plasmids

® NN36 from Tokyo in 2007 (16), NN47 from Saitama in 2008 (17), 549 from Okinawa in 2008 (18)

¢ SCCmeclV.new.1.1 was tentatively designated SCCmecIV1 (15)

4 Split hib gene caused by insertion of bacteriophage

¢ c12ag, core 12 adhesin genes shared by all strains: icaA, icaD (for biofilm formation); eno (for laminin-adhesin); finbA, fnbB (for fibronectin-adhesin); ebpS (for elastin-adhesin); clfA, clfB, fib,

sdrC, sdrD, sdrE (for fibrinogen-adhesin)

 Includes one fib-negative case

£ Not determined
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Fig. 1 TSST-1 production levels of ST8 community-acquired meth-
icillin-resistant Staphylococcus aureus (CA-MRSA)/J (strain NN50),
compared with USA300 and the New York/Japan clone. USA300
lacks the #st gene encoding TSST-1 (USA300 strains produced no
TSST-1). Strains 16 and I8 were isolated from toxic shock syndrome
(TSS) patients in Niigata. NY/J, New York Japan clone. Typical
results in triplicate experiments are shown

hospital or community environments. The year 2011 marks
the 50th anniversary of the first report on MRSA, but
MRSA has still posed serious threat and claimed many
lives. Epidemic MRSA includes divergent clones, and ST8
CA-MRSA USA300 (the most prevalent clone in the
United States [5]) is one of the best characterized MRSA.
However, the contribution of PVL and ACME in the
USA300 virulence, for example, remains to be conclu-
sively proven, and the key virulence factors contributing to
USA300 community spread and virulence are still not fully
understood [5]; for instance, the role of PVL in the path-
ogenesis of MRSA infections is controversial in animal
models, although PVL may exert strong activity on human
neutrophils [9]. In this study, we characterized ST8 CA-
MRSA/J (a successful native clone in Japan), clinically and
genetically (at the genome levels) for the first time, com-
pared with ST8 CA-MRSA USA300.

Regarding SSTIs caused by ST8 CA-MRSA/J, deep
pyogenic skin infections with severe pain and extremely
large abscesses were rare, in contrast to PVL-positive CA-
MRSA (including USA300) [1, 4, 16, 18, 19], which may be
the result of lack of PVL in ST8 CA-MRSA/J. Bullous
impetigo is a common disease among children [4, 27], and
ET-producing S. aureus is a major cause [27]. Although ST8
CA-MRSA/J was ET negative, it was frequently isolated
from bullous impetigo. Bullous impetigo could be caused by
a mixed infection with ET-positive S. aureus [12]. In Japan,
MRSA is isolated from 10-20% of S. aureus from bullous
impetigo [11, 12, 28]; the ST8 type accounted for approxi-
mately 16.2% (11/68) of such MRSA cases (unpublished
data). It is strongly speculated that ST8 CA-MRSA/J infects
scratched skin and soft tissues in children using a possible
adhesin, CWASP/J (encoded by the spj gene of SCCmecIVI).

Athletes are at risk for CA-MRSA infections through
skin-to-skin contact [4, 29]. In this study, two cases were
student athlete infections by ST8 CA-MRSA/J.
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Fig. 2 Pulsed-field gel electrophoresis (PFGE) patterns of ST8 CA-
MRSA/J strains (including variants). Public transport strains, severe
invasive infection cases, Hong Kong strains directly related to strains

For enteritis, because severe MRSA enteritis was noted
in the 1980s to 1990s in Japan, when hospital MRSA
outbreaks occurred [30], and superantigens, such as TSST-
1, were noted as important virulence factors, ST8 CA-
MRSA/J enteritis could be caused most probably by higher
levels of TSST-1 (or combination of superantigens).

Invasive infections were also characteristics of ST8 CA-
MRSA/J and included uncommon epidural abscesses with
sepsis and necrotizing pneumonia with severe and rapid
cavity formation. Responsible virulence factors may
include a-hemolysin (Hla) and cytolytic peptides (Psms
and Hld), which were proposed by Diep and Otto [5].
TSST-1, which was produced at much higher levels than
the New York/Japan clone, may also contribute to the ST8
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CA-MRSA/J pathogenesis. Interestingly, the PFGE type of
these ST8 CA-MRSA/J invasive strains was the same
(ST8Ip), representing a virulent type.

For USA300, community-acquired pneumonia is noted
during the influenza season [31]. In this study, patients with
severe invasive infections had suffered from influenza 1
week before the MRSA-related symptoms, suggesting an
influenza prodrome case, requiring attention to ST8 CA-
MRSA/J invasive infection during the influenza season.

From a genetic point of view, ST8 CA-MRSA/J is a
geographic variant of ST8 CA-MRSA, which is one of the
most worldwide-disseminated lineages [5]. ST8 CA-MRSA/
J was isolated in 2003 in Japan [11] for the first time, to our
knowledge, and has already undergone clonal expansion,
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Fig. 4 The mosaic structure of
SaPIj50 carrying the
superantigen genes, fst, sec, and
sel, compared with SaPIm4, PI
TO131, and SaPIm1/nl. The
GenBank accession numbers of
(SaPIm4 and SaPIm1/n1) and PI
TO131 are NC_002758 and
CP002643, respectively.
Homologous regions are shaded
in the figure (the sizes and
percentage homologies of each
region are also indicated). The
att sequence of SaPIj50 was the
same as SaPIm4, but divergent
from SaPIm1/nl; the left-side
region carrying the integrase
gene (int) of SaPIj50 showed a
high similarity to SaPIm4, but
not to SaPIm1/nl. The
replication initiator gene (rep)
region of SaPIj50 showed a high
similarity to PI TO131, but not
to SaPIm4 or SaPIm1/nl. The
terminase (which cleaves
multimeric DNA) gene (fer)
showed a similarity to both
SaPIm1/nl and PI TO131. Also,
the right-side virulence region
carrying the superantigen genes
(tst, sec, and sel) showed a high
similarity to SaPIm1/nl,
indicating that the superantigen
region of SaPIj50 originates in
SaPIml/nl of the New York/
Japan clone (the most prominent
HA-MRSA in Japan)
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growing as a major MRSA in the community in Japan. ST8
CA-MRSA/J includes ST and spa variants, and exhibits
divergence in terms of carriage of the lukE-lukD, sep, edin
genes, drug resistance patterns, and PFGE patterns.

The most exceptional features of the ST8 CA-MRSA/J
genome are carriage of novel SCCmecIV] and mosaic
SaPIj50. SCCmeclIVI carried the J1 region with the spj
gene encoding new CWASP with an LPXTG motif
(CWASP/J). SCCmec-associated CWASP gene (pls, for
plasmin-sensitive surface protein) was previously reported
[32], but the spj gene showed no homology to the pls gene.
CWASPs include adhesins such as collagen adhesin and
fibronectin-binding protein A [33], suggesting a possible
role of SCCmeclIV1 as a colonization stimulation (because
of the spj gene in the J1 region of SCCmecIVl), in addition
to drug resistance suitable for the community (because of
SCCmeclV) [6]. The origin of the spj gene remains
unknown.

SaPl is a phage-related chromosomal island, which
represents phage satellites producing phage-like infectious
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particles [34]. SaPIj50 was a novel mosaic structure that
most probably emerged through recombination of SaPIm4,
PI TO131, and SaPIml/nl; i.e., the superantigen (st, sec,
and sel) region of SaPIj50 most probably originated from
SaPIm1/nl of the New York/Japan clone (the prominent
HA-MRSA clone) in Japan. This finding also indicates that
the evolution of ST8 CA-MRSA/J includes the acquisition
of the virulence genes of HA-MRSA in Japan.

Based on these evolutionary features, we strongly con-
sider that SCCmeclIVI and SaPIj50, both of which emerged
in and were unique to Japan, must serve as a key factor for
ST8 CA-MRSA/J spread and infections in community
settings in Japan.

As for superantigens, this notion may be emphasized
by the fact that the number of superantigen genes is
greater in ST8 CA-MRSA/J than in USA300 (4 vs. 2;
ST8 CA-MRSA/J carried SaPlj50 carrying tst, sec, and
sel and @Sa3 carrying sep [35], whereas USA300 carried
only SaPI5 carrying sek and seq) and ST8 CA-MRSA/J
is a high TSST-1 producer. TSST-1 may suppress the
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mobility of PMNs to infection sites [36], allowing
MRSA to invade tissues, in addition to exhibiting toxic
shock activities [37]. It should be noted that USA300
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Fig. 5 Divergence between the structures of ¢Sa3 (a) or major
histocompatibility complex (MCH) class II analog (MAP) (b) in ST8
CA-MRSA/J strain NN50 and USA300. GenBank accession number
of ¢Sa3usa and Map in USA300 is NC_007793. In a, homologous
regions are shaded. In b, for map, the number of repeated domains of
110 residues (which include a 31-amino-acid subdomain with a high
similarity to the peptide-binding groove of the fi-chain of MHC class
II proteins) was five times for USA300 and six times for NN50
(indicating more repetitions in NN50)

and the New York/Japan clone in the United States [38]
lack the tst gene.

Moreover, ST8 CA-MRSA/J carried common virulence
genes on the chromosome, such as the peptide cytolysin
genes (psmo. or psmf) [5, 39], fibronectin binding protein
(fnb) gene [40], and a series of genes responsible for host
immune evasion, such as map, ssl, and scn [41, 42], albeit
with divergence (e.g., repetitions in map).

Finally, ST8 CA-MRSA/J became gentamicin resistant
by the acquisition of transposon Tn400! [43] on the
chromosome. In Japan, CA-MRSA generally exhibits
gentamicin resistance at high frequency (80-90%, [11];
unpublished data), because gentamicin ointment has com-
monly been used for the treatment of SSTIs. Gentamicin
resistance is occasionally encoded by a plasmid [11].

In conclusion, although ST8 CA-MRSA/J is a geo-
graphic variant of the ST8 CA-MRSA lineage, it now has
become well adapted to the Japanese community as a
successful native CA-MRSA clone, as characterized by the
carriage of SCCmeclIV1, SaPIj50, and Tn4001. Its evolution
included a salvage step (through recombination) of the
virulence region of the HA-MRSA New York/Japan clone.
ST8 CA-MRSA/] has undergone clonal expansion. We
speculate that the unique combination (in synergy) of virulence
factors (such as CWASP/J, TSST-1, PSMs, a-hemolysin, and
others) and drug (e.g., gentamicin) resistance allows ST8
CA-MRSA/J to be a successful clone.
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Fig. 6 The levels of mRNA expression for the virulence genes in
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(including USA300 and ST8 CA-MRSA/J) were similar, but they
were significantly higher than the New York/Japan (NY/J) clone of
HA-MRSA (P < 0.05). The PVL gene expression levels were similar
among the PVL-positive clones (data not shown). The ST22, ST30,
ST59, ST89, and STI1 clones were negative for the lukED genes
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